3. Determinants and Diagonalization

With each square matrix we can calculate a number, called the determinant of the matrix, which tells us
whether or not the matrix is invertible. In fact, determinants can be used to give a formula for the inverse
of a matrix. They also arise in calculating certain numbers (called eigenvalues) associated with the matrix.
These eigenvalues are essential to a technique called diagonalization that is used in many applications
where it is desired to predict the future behaviour of a system. For example, we use it to predict whether a
species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term “determinant” was first used in
1801 by Gauss is his Disquisitiones Arithmeticae. Determinants are much older than matrices (which
were introduced by Cayley in 1878) and were used extensively in the eighteenth and nineteenth centuries,
primarily because of their significance in geometry (see Section 4.4). Although they are somewhat less
important today, determinants still play a role in the theory and application of matrix algebra.

3.1 The Cofactor Expansion

In Section 2.4 we defined the determinant of a 2 x 2 matrix A = { ‘Cl b } as follows:!

d

a b

detA = J

‘:ad—bc

and showed (in Example 2.4.4) that A has an inverse if and only if det A # 0. One objective of this chapter
is to do this for any square matrix A. There is no difficulty for 1 x 1 matrices: If A = [a], we define
det A = det [a] = a and note that A is invertible if and only if a # 0.

If A is 3 x 3 and invertible, we look for a suitable definition of det A by trying to carry A to the identity
matrix by row operations. The first column is not zero (A is invertible); suppose the (1, 1)-entry a is not
zero. Then row operations give

a b c a b ¢ a b c a b c
A=|d e f|—|ad ae af | - | 0 ae—bd af—cd | =|0 u af—cd
g h i ag ah ai 0 ah—bg ai—cg 0 v ai—cg

where u = ae — bd and v = ah — bg. Since A is invertible, one of u and v is nonzero (by Example 2.4.11);
suppose that u = 0. Then the reduction proceeds

a b c a b c a b c
A= |0 u af—cd | - | 0 u af—cd — 10 u af—cd
0 v ai—cg 0 wuv u(ai—cg) 0 0 w

Determinants are commonly written |A| = det A using vertical bars. We will use both notations.
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146 = Determinants and Diagonalization

where w = u(ai — cg) —v(af —cd) = a(aei+bfg+ cdh — ceg — afh — bdi). We define
det A =aei+bfg+cdh—ceg—afh—bdi (3.1

and observe that det A = 0 because a det A = w # 0 (is invertible).

To motivate the definition below, collect the terms in Equation 3.1 involving the entries a, b, and ¢ in
row 1 of A:

a b c
detA=|d e f |=aei+bfg+cdh—ceg—afh—bdi
g h i
=a(ei— fh) —b(di— fg)+c(dh—eg)
_ e f| . |d f d e
M ho b‘g i|te g h

This last expression can be described as follows: To compute the determinant of a 3 X 3 matrix A, multiply
each entry in row 1 by a sign times the determinant of the 2 x 2 matrix obtained by deleting the row and
column of that entry, and add the results. The signs alternate down row 1, starting with 4. It is this
observation that we generalize below.

Example 3.1.1

2 3 7
det | =4 0 6 :2'(5) 8'—3'_‘1‘ (6)'+7'_‘11 2'
1 50

=2(—30) —3(—6) +7(—20)
=182

This suggests an inductive method of defining the determinant of any square matrix in terms of de-
terminants of matrices one size smaller. The idea is to define determinants of 3 x 3 matrices in terms of
determinants of 2 x 2 matrices, then we do 4 x 4 matrices in terms of 3 x 3 matrices, and so on.

To describe this, we need some terminology.

Definition 3.1 Cofactors of a Matrix

Assume that determinants of (n — 1) x (n — 1) matrices have been defined. Given the n X n matrix
A, let

A;j denote the (n— 1) x (n— 1) matrix obtained from A by deleting row i and column j.
Then the (i, j)-cofactor c;j(A) is the scalar defined by
cij(A) = (=1)" det (A;;)

Here (—1)™/ is called the sign of the (i, j)-position.
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The sign of a position is clearly 1 or —1, and the following diagram is useful for remembering it:

+ - +

+ -+

C
C A+

Note that the signs alternate along each row and column with 4 in the upper left corner.

Example 3.1.2

Find the cofactors of positions (1, 2), (3, 1), and (2, 3) in the following matrix.

8 4
sign of position (1, 2)is (—1)!*2 = —1 (this is also the (1, 2)-entry in the sign diagram), so the
(1, 2)-cofactor is

Solution. Here A, is the matrix { o } that remains when row 1 and column 2 are deleted. The

()= (-1 2

; ‘:(—1)(5-4—7-8)=(—1)(—36):36

Turning to position (3, 1), we find

c31(A) = (—1)°T1 A5 = (—1)*! _; ’ = (+1)(-7—-12) = —19
Finally, the (2, 3)-cofactor is
enl) = (-1 = (<17 3 g | = (-n@7+8) =35

Clearly other cofactors can be found—there are nine in all, one for each position in the matrix.

We can now define det A for any square matrix A

Definition 3.2 Cofactor expansion of a Matrix

Assume that determinants of (n — 1) x (n— 1) matrices have been defined. If A = [a;;| isn x n
define
det A =ajic11(A) +anciz(A) + -+ +aincin(A)

This is called the cofactor expansion of det A along row 1.
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It asserts that det A can be computed by multiplying the entries of row 1 by the corresponding cofac-
tors, and adding the results. The astonishing thing is that det A can be computed by taking the cofactor
expansion along any row or column: Simply multiply each entry of that row or column by the correspond-
ing cofactor and add.

Theorem 3.1.1: Cofactor Expansion Theorem?

The determinant of an n X n matrix A can be computed by using the cofactor expansion along any
row or column of A. That is det A can be computed by multiplying each entry of the row or
column by the corresponding cofactor and adding the results.

The proof will be given in Section 3.6.

Example 3.1.3

34 5
Compute the determinantof A= | 1 7 2
9 8 —6

Solution. The cofactor expansion along the first row is as follows:

detA = 3C11(A) —|-4612(A) +5c13 (A)

S T
= 3(—58) —4(—24) +5(—55)
— 353

Note that the signs alternate along the row (indeed along any row or column). Now we compute
det A by expanding along the first column.

detA = 36‘11(14) + 1cyg (A) +9C31(A)

=3|5 2|8 2|+|3 3]
= 3(—58) — (—64) +9(—27)
= —353

The reader is invited to verify that det A can be computed by expanding along any other row or
column.

The fact that the cofactor expansion along any row or column of a matrix A always gives the same
result (the determinant of A) is remarkable, to say the least. The choice of a particular row or column can
simplify the calculation.

The cofactor expansion is due to Pierre Simon de Laplace (1749-1827), who discovered it in 1772 as part of a study of
linear differential equations. Laplace is primarily remembered for his work in astronomy and applied mathematics.
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Example 3.1.4

300 O

512 0

Compute det A where A = 26 0 —1
-6 31 0

Solution. The first choice we must make is which row or column to use in the cofactor expansion.
The expansion involves multiplying entries by cofactors, so the work is minimized when the row
or column contains as many zero entries as possible. Row 1 is a best choice in this matrix (column
4 would do as well), and the expansion is

det A = 3C11(A) +0012(A) +0013(A) —|—OC14(A)
1 2 0
=36 0 —1
31 0

This is the first stage of the calculation, and we have succeeded in expressing the determinant of
the 4 x 4 matrix A in terms of the determinant of a 3 x 3 matrix. The next stage involves this 3 x 3
matrix. Again, we can use any row or column for the cofactor expansion. The third column is
preferred (with two zeros), so

detA:3(0' oY '—(—1)' 5 '+0' 6 0 D
=3[041(=5) +0]

=-—15

This completes the calculation.

Computing the determinant of a matrix A can be tedious. For example, if A is a 4 X 4 matrix, the
cofactor expansion along any row or column involves calculating four cofactors, each of which involves
the determinant of a 3 x 3 matrix. And if A is 5 x 5, the expansion involves five determinants of 4 x 4
matrices! There is a clear need for some techniques to cut down the work.?

The motivation for the method is the observation (see Example 3.1.4) that calculating a determinant
is simplified a great deal when a row or column consists mostly of zeros. (In fact, when a row or column
consists entirely of zeros, the determinant is zero—simply expand along that row or column.)

Recall next that one method of creating zeros in a matrix is to apply elementary row operations to it.
Hence, a natural question to ask is what effect such a row operation has on the determinant of the matrix.
It turns out that the effect is easy to determine and that elementary column operations can be used in the
same way. These observations lead to a technique for evaluating determinants that greatly reduces the

a b ¢ a b ¢ a b
SIfA=| d e f | wecancalculate det A by considering | d e f d e | obtained from A by adjoining columns
g h i g h i g h

1 and 2 on the right. Then detA = aei+ bfg+ cdh — ceg — afh — bdi, where the positive terms aei, bfg, and cdh are the
products down and to the right starting at a, b, and c, and the negative terms ceg, afh, and bdi are the products down and to the
left starting at ¢, a, and b. Warning: This rule does not apply to n x n matrices where n > 3 or n = 2.
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labour involved. The necessary information is given in Theorem 3.1.2.

Theorem 3.1.2

Let A denote an n X n matrix.

1. If A has a row or column of zeros, det A = 0.

2. If two distinct rows (or columns) of A are interchanged, the determinant of the resulting
matrix is — det A.

3. If arow (or column) of A is multiplied by a constant u, the determinant of the resulting
matrix is u(det A).

4. If two distinct rows (or columns) of A are identical, det A = 0.

5. If a multiple of one row of A is added to a different row (or if a multiple of a column is added
to a different column), the determinant of the resulting matrix is det A.

Proof. We prove properties 2, 4, and 5 and leave the rest as exercises.

Property 2. If A is n X n, this follows by induction on n. If n = 2, the verification is left to the reader.
If n > 2 and two rows are interchanged, let B denote the resulting matrix. Expand det A and det B along a
row other than the two that were interchanged. The entries in this row are the same for both A and B, but
the cofactors in B are the negatives of those in A (by induction) because the corresponding (n—1) x (n—1)
matrices have two rows interchanged. Hence, det B = — det A, as required. A similar argument works if
two columns are interchanged.

Property 4. If two rows of A are equal, let B be the matrix obtained by interchanging them. Then
B =A, so det B=detA. But det B= — det A by property 2, so det A = det B = 0. Again, the same
argument works for columns.

Property 5. Let B be obtained from A = [a,— j} by adding u times row p to row g. Then row ¢ of B is
(aql +uapy, agp +uap, ..., dgh+ uapn)

The cofactors of these elements in B are the same as in A (they do not involve row ¢): in symbols,
cqj(B) = c4j(A) for each j. Hence, expanding B along row ¢ gives

det A = (ag1 +uapi)cq1(A) + (agp +uap)cp(A) + -+ (agn + uap, ) cgn(A)
= [agicq1(A) +agpcp(A)+ -+ agncgn(A)] +ulapicg (A) +apcp(A) + -+ apncgn(A)]
=detA+udetC

where C is the matrix obtained from A by replacing row g by row p (and both expansions are along row
q). Because rows p and ¢ of C are equal, det C = 0 by property 4. Hence, det B = detA, as required. As
before, a similar proof holds for columns. Il

To illustrate Theorem 3.1.2, consider the following determinants.
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3 -1 2

2 5 1]=0 (because the last row consists of zeros)

0O 00

3 -1 5 5 -1 3

2 8 =— 7 8 2 (because two columns are interchanged)

1 2 -1 -1 21

8 1 2 8 1 2

30 9(=3/10 3 (because the second row of the matrix on the left is 3 times

1 2 -1 1 2 -1 the second row of the matrix on the right)

2 1 2

4 0 41=0 (because two columns are identical)

1 31
25 2 0 9 20

-1 2 9|=|-12 9 (because twice the second row of the matrix on the left was
311 31 1 added to the first row)

The following four examples illustrate how Theorem 3.1.2 is used to evaluate determinants.

Example 3.1.5

1 —1 3
Evaluate det A when A = | 1 0 —1
2 1 6

Solution. The matrix does have zero entries, so expansion along (say) the second row would
involve somewhat less work. However, a column operation can be used to get a zero in position
(2, 3)—namely, add column 1 to column 3. Because this does not change the value of the
determinant, we obtain

il 2 1 -1 4 ;
dtA=|1 0 —1|=|1 00 :—' X ’:n
2 1 2 18

where we expanded the second 3 X 3 matrix along row 2.

Example 3.1.6

a b c at+x b+y c+z
Ifdet | p g r | =6,evaluate det A where A = 3x 3y 3z

vy z -p —q -
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Solution. First take common factors out of rows 2 and 3.

a+x b+y c+z
det A =3(—1) det X y z

p q r

Now subtract the second row from the first and interchange the last two rows.

a b
detA=—3det | x y =3 det =3.6=18
P q

NN O

b
q
Y

S N0
=T Q

The determinant of a matrix is a sum of products of its entries. In particular, if these entries are
polynomials in x, then the determinant itself is a polynomial in x. It is often of interest to determine which
values of x make the determinant zero, so it is very useful if the determinant is given in factored form.
Theorem 3.1.2 can help.

Example 3.1.7

Find the values of x for which det A = 0, where A =

s
= = =
—_— = =

Solution. To evaluate det A, first subtract x times row 1 from rows 2 and 3.

X X
1—x2 x—x2

x—xt 1—x?

X 1
x|=]0 1—-x%2 x—x% |=
1 0 2

1
detA=| x 1
X x—x2 1—x2

= = =

At this stage we could simply evaluate the determinant (the result is 2x> — 3x> + 1). But then we
would have to factor this polynomial to find the values of x that make it zero. However, this
factorization can be obtained directly by first factoring each entry in the determinant and taking a
common factor of (1 —x) from each row.

1-(1+2)  x(1-x)

detA = x(1—x) (1—x)(1+x)

=(1 —x)2

Hence, det A = 0 means (1 —x)?(2x+1) =0, thatisx =1 orx = —

=
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Example 3.1.8

If a1, ap, and a3 are given show that

1 a a%
det | 1 a» a% =(a3—ay)(az—az)(ay —ay)

2
I a3 a3

Solution. Begin by subtracting row 1 from rows 2 and 3, and then expand along column 1:

1 a a 1 ai a2 2 2
2 2_ 2 Gp =@ oh =4y
det | 1 ap a5 | =det | 0 ap—a; a3—aj | = 5 5
2 2 % as—dap az—dajg
I a3 a3 0 az—a; a5—aj

Now (a2 —aj) and (a3 —a;) are common factors in rows 1 and 2, respectively, so

1 a a% | ar+a
det | 1 a» a% = (ap —ay)(az —ay) det 2T
5 1 az+a;

I a3 a3

= (ay—ay)(a3 —a1)(a3 — a2)

The matrix in Example 3.1.8 is called a Vandermonde matrix, and the formula for its determinant can be
generalized to the n X n case (see Theorem 3.2.7).

If A is an n X n matrix, forming uA means multiplying every row of A by u. Applying property 3 of
Theorem 3.1.2, we can take the common factor u out of each row and so obtain the following useful result.

If A is an n X n matrix, then det (uA) = u" det A for any number u.

The next example displays a type of matrix whose determinant is easy to compute.

Example 3.1.9

a 000
Evaluate det A if A= | “ b 00
v we O
x y z d
b 0 0
Solution. Expand along row 1 to get detA=a| w ¢ 0 |. Now expand this along the top row to
y z.d
get detA =ab (Z: 2 ’ = abcd, the product of the main diagonal entries.
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A square matrix is called a lower triangular matrix if all entries above the main diagonal are zero
(as in Example 3.1.9). Similarly, an upper triangular matrix is one for which all entries below the main
diagonal are zero. A triangular matrix is one that is either upper or lower triangular. Theorem 3.1.4
gives an easy rule for calculating the determinant of any triangular matrix. The proof is like the solution
to Example 3.1.9.

Theorem 3.1.4
If A is a square triangular matrix, then det A is the product of the entries on the main diagonal.

Theorem 3.1.4 is useful in computer calculations because it is a routine matter to carry a matrix to trian-
gular form using row operations.

Block matrices such as those in the next theorem arise frequently in practice, and the theorem gives an
easy method for computing their determinants. This dovetails with Example 2.4.11.

Theorem 3.1.5

Consider matrices [13 )Ig } and { g

Y B ] in block form, where A and B are square matrices.
Then

det {A 2 } — det A det B and det {

A 0
0 B }—detAdetB

Y B

Proof. Write T = det { A and proceed by induction on k where A is k x k. If k = 1, it is the cofactor

X
0 B
expansion along column 1. In general let S;(7) denote the matrix obtained from 7 by deleting row i and
column 1. Then the cofactor expansion of det 7" along the first column is

det T = aj; det (SI(T)) —ap; det (SQ(T)) + -+ Fay det (Sk(T)) 3.2)

Si(A) X;
0 B } for each

i=1,2, -, k,so det(S;(T)) = det(S;(A)) - det B by induction. Hence, Equation 3.2 becomes

where a1, azy, -+, ag are the entries in the first column of A. But S;(T) = {

detT = {an det (Sl(T)) —ap; det (Sz(T)) + - day det (Sk(T))} det B

={detA} detB
as required. The lower triangular case is similar. U
Example 3.1.10
2 3 13 2 1 33
I -2 -1 1 I -1 =2 1 2 1|11
det | o 1= o 11 __'1 —1"4 1'__(_3)(_3)__9
0 4 01 0 0 41
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The next result shows that det A is a linear transformation when regarded as a function of a fixed
column of A. The proof is Exercise 3.1.21.

Theorem 3.1.6

T(x)=det | ¢

Given columns ¢, ---, €j_1, €jyq,

Ci—1

Then, for all x and y in R" and all a in R,

-, ¢, inR", define T : R" — R by

T(x+y)=T(x)+T(y)

X Cj+1

¢, | forallx inR"

and T(ax)=aT(x)

Exercises for 3.1

Exercise 3.1.1 Compute the determinants of the follow-

ing matrices.

[ 2
| 3

-1

2

|

[ a® ab

ab b*?

[ cos@
sin @

—
[\

I
- o &

=
W O W O
O = O =

p— e (D
—_— O W =

|

—sin@
cos 0

N =0 O

—_— N = DN

[
I e S N e

N O O

|

6

9

|8 12

[ a+

a

1

w N O

a
a—1

|

O = O =

—_— N DN =

1 -1 5 5 000 a
. 301 2 4 00 b p
-1 38 ol Plooc g &k
1 1 2 -1 d s t u

Exercise 3.1.2 Show that det A = 0 if A has a row or
column consisting of zeros.

Exercise 3.1.3 Show that the sign of the position in the
last row and the last column of A is always +1.

Exercise 3.1.4 Show that det / = 1 for any identity ma-
trix 1.

Exercise 3.1.5 Evaluate the determinant of each matrix
by reducing it to upper triangular form.

-1 2 -1 31
a |3 1 b| 2 53
(2 -1 3 1 21
[ —1 -1 10 [2 3 1
. 2 1 13| |02 13
o 1 12| % ]o0s 1
13 -1 2 11 5

Exercise 3.1.6 Evaluate by cursory inspection:

a b c
a+1 b+1 c+1
a—1 b—1 c—1

a. det
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a b c
b. det [ a+b 2b c+b
2 2 2
a b c
Exercise 3.1.7 If det | p g r | =—1 compute:
X 'y Zz
[ —x -y -z
a. det | 3p+a 3g+b 3r+c
2p 2q 2r
[ —2a -2b —2c
b. det | 2p+x 2g+y 2r+z
3x 3y 3z
Exercise 3.1.8 Show that:
[ p+x gty rtz a b
a. det | a+x b+y c+z | =2det| p ¢
| a+p b+q c+r Xy
[ 2a+p 2b+q 2c+r a b c
b. det | 2p+x 2g+y 2r+z | =9det | p ¢
| 2x+a 2y+b 2z+c Xy z

Exercise 3.1.9 In each case either prove the statement
or give an example showing that it is false:

a. det(A+B) = det A+ det B.
b. If det A =0, then A has two equal rows.
c. IfAis2x 2, then det(AT) = det A.

d. If R is the reduced row-echelon form of A, then
det A = det R.

e. If Ais 2 x 2, then det (7A4) = 49 det A.
f. det(AT) = — det A.
g. det(—A) = — det A.

h. If det A = det B where A and B are the same size,
then A = B.

Exercise 3.1.10 Compute the determinant of each ma-
trix, using Theorem 3.1.5.

ot
SO = O =
O O = = -
S O WO N
—_ W O~ O

S~ N

—

o
eNeNel S
SO O W
W =N = O
SO = kW
—_N = O O

Exercise 3.1.11 If det A =2, det B=—1,and detC =
3, find:

a. det b. det

c. det d. det

N> NI o

N o™X o

Exercise 3.1.12 If A has three columns with only the
top two entries nonzero, show that det A = 0.

Exercise 3.1.13
a. Find det A if Ais 3 x 3 and det(24) =6.

b. Under what conditions is det (—A) = det A?

Exercise 3.1.14 Evaluate by first adding all other rows
to the first row.

[ x—1 2 3
a. det 2 -3 x-2
| -2 x =2
[ x—1 -3 1
b. det 2 -1 x-1
-3 x+2 =2
Exercise 3.1.15
5 -1 «x
a. Find b if det 2 6 y | =ax+by+cz
4 z
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x -1 Exercise 3.1.22 Show that
b. Find c if det 1 y 3| =ax+by+cz - -
37 4 o o - 0 a
0 0 - a x
det | : c | =(=Drajay---ay
Exercise 3.1.16 Find the real numbers x and y such that 0 a,
det A =0if: L a, |
where either n = 2k or n = 2k + 1, and x-entries are arbi-
[0 x 1 x x| trary.
a A=y 0 x boA=] —x —2 Exercise 3.1.23 By expanding along the first column,
x y 0 —-x —x -3 .
- show that:
1 x 2 X (1 1.0 0 -+ 0 0]
x 2 X 1 011 - 00
C A — 2 3
x x 1 x 0011 - 00 |
P det | . . . . o =1+4(-1)""
x y 0 0 00 O0O0 --- 11
1000 - 01
d. A= 8 0 0 - -
Y if the matrix isn X n, n > 2.
|y 0 0 x
Exercise 3.1.24 Form matrix B from a matrix A by writ-
ing the columns of A in reverse order. Express det B in
Exercise 3.1.17 Show that terms of det A.
0111 Exercise 3.1.25 Prove property 3 of Theorem 3.1.2 by
det 1 0 g Yl 232 expanding along the row (or column) in question.
X X
1 x x O Exercise 3.1.26 Show that the line through two distinct
) points (x1, y1) and (x2, y2) in the plane has equation
Exercise 3.1.18 Show that
1 x x* x Xy
alxxz_ det [ x; y1 1 | =0
det s b1 x = (1—ax)(1—bx)(1—cx). o oy 1
Ll g r ¢ 1
. Exercise 3.1.27 Let A be an n X n matrix. Given a poly-
E)_(erCISe 3.1.19 _ 5 - nomial p(x) = ap+ajx+---+ a,x", we write
Given the polyno(r)mal Ii(x) Ea—l—(l;x—l—cx +dx’ +x", the P(A) = apl + @A + -+ apA™.
0 0 1 0 For example, if p(x) = 2 — 3x+ 5x%, then
matrix C = o 0 0 1 is called the com- p(A) =21 — 3A + 5A2. The characteristic polynomial of
a4 —b —c —d A is defined to be c4(x) = det[x] —A], and the Cayley-
panion matrix of p(x). Show that det (x/ —C) = p(x). Eamllton theorem asserts that c4(A) = 0 for any matrix
Exercise 3.1.20 Show that
a+x b+x c+x a. Verify the theorem for
det | b+x c+x a+x
ctx at+x b+x i. A:[?’ 2] . -1
= (a+b+c+3x)[(ab+ac+bc) — (a+ b+ )] -l ii. A= g ; g

Exercise 3.1.21 . Prove Theorem 3.1.6. [Hint: Expand

the determinant along column j.] b. Prove the theorem for A — { a 2 }
c



158 = Determinants and Diagonalization

3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived. One consequence of these theorems is
that a square matrix A is invertible if and only if det A # 0. Moreover, determinants are used to give a
formula for A~! which, in turn, yields a formula (called Cramer’s rule) for the solution of any system of
linear equations with an invertible coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812) about the determinant of a product of
matrices. The proof is given at the end of this section.

Theorem 3.2.1: Product Theorem
If A and B are n X n matrices, then det (AB) = det A det B.

The complexity of matrix multiplication makes the product theorem quite unexpected. Here is an
example where it reveals an important numerical identity.

Example 3.2.1

_ a b _ c d _ ac —bd ad +bc
IfA—{_b a]andB—{_d c}thenAB_[—(ad—i—bc) ac—bd}

Hence det A det B = det (AB) gives the identity

(a® +b%)(? +d?) = (ac — bd)* + (ad + bc)?

Theorem 3.2.1 extends easily to det (ABC) = det A det B det C. In fact, induction gives
det(A1Ay---A;_1A;) = det Aj det Ay --- det Ay det Ag
for any square matrices Ay, ..., A; of the same size. In particular, if each A; = A, we obtain
det (A¥) = (detA)*, forany k > 1

We can now give the invertibility condition.

Ann x n matrix A is invertible if and only if det A # 0. When this is the case, det (A™") = ——

Proof. If A is invertible, then AA~! = I; so the product theorem gives
1=detl=det(AA™!)=detAdetA!

“1_ 1
Hence, det A # 0 and also det A~ = Sord



